Актуальные новости банковской сферы.
BTC
$108,097.85
-1.29%
ETH
$2,513.59
-2.93%
LTC
$86.94
-1.59%
DASH
$19.88
-2.6%
XMR
$314.47
-1.65%
NXT
$0.00
-1.29%
ETC
$16.37
-3.49%
DOGE
$0.16
-4.63%
ZEC
$40.54
-0.71%
BTS
$0.00
+1.06%
DGB
$0.01
-2.76%
XRP
$2.22
-1.91%
BTCD
$1,027.19
-1.29%
PPC
$0.81
-1.29%
YBC
$6,362.69
-1.29%

Сбербанк обучил ИИ анализу банковских данных

Исследователи из России создали новый метод обучения нейросетей, позволяющий учитывать как локальные, так и глобальные аспекты данных о банковских операциях. Эта разработка, поддержанная грантом Российского научного фонда, может повысить точность прогнозов на 20%.

Как пояснил научный директор Лаборатории искусственного интеллекта Сбербанка Андрей Савченко, ранее большинство задач в этой сфере относились к глобальным, но сейчас возросла потребность в решении локальных проблем, и предложенный алгоритм оказался готов к этому вызову.

Современные системы машинного обучения анализируют последовательности банковских транзакций, выявляя закономерности, важные для оценки кредитных рисков и обнаружения мошеннических действий. Однако существующие методы часто фокусируются либо на стабильных факторах, таких как возраст клиента, либо на динамических изменениях, например, смене места жительства, не учитывая макроэкономические индикаторы и поведение похожих клиентов.

Новый подход российских учёных позволяет учитывать весь спектр факторов, а также внешний контекст, что улучшает точность анализа. Метод был протестирован на восьми нейросетевых моделях и пяти наборах данных, подтвердив свою эффективность.

Алексей Зайцев, заведующий лабораторией Центра искусственного интеллекта Сколтеха, отметил, что учёные смогли адаптировать модель даже к изменениям в поведении пользователей, а учёт данных о похожих клиентах дополнительно повысил точность прогнозов.

Оставьте ответ

Ваш электронный адрес не будет опубликован.