Актуальные новости банковской сферы.
BTC
$104,801.81
-0.66%
ETH
$2,514.64
-1.51%
LTC
$85.22
+1.2%
DASH
$20.20
-0.31%
XMR
$311.20
-0.11%
NXT
$0.00
-0.66%
ETC
$16.64
+0.26%
DOGE
$0.18
-0.96%
ZEC
$43.90
-3.77%
BTS
$0.00
-0.72%
DGB
$0.01
-0.14%
XRP
$2.15
+0.26%
BTCD
$995.87
-0.66%
PPC
$0.27
-0.78%
YBC
$5,240.09
-0.66%

Сбербанк обучил ИИ анализу банковских данных

Исследователи из России создали новый метод обучения нейросетей, позволяющий учитывать как локальные, так и глобальные аспекты данных о банковских операциях. Эта разработка, поддержанная грантом Российского научного фонда, может повысить точность прогнозов на 20%.

Как пояснил научный директор Лаборатории искусственного интеллекта Сбербанка Андрей Савченко, ранее большинство задач в этой сфере относились к глобальным, но сейчас возросла потребность в решении локальных проблем, и предложенный алгоритм оказался готов к этому вызову.

Современные системы машинного обучения анализируют последовательности банковских транзакций, выявляя закономерности, важные для оценки кредитных рисков и обнаружения мошеннических действий. Однако существующие методы часто фокусируются либо на стабильных факторах, таких как возраст клиента, либо на динамических изменениях, например, смене места жительства, не учитывая макроэкономические индикаторы и поведение похожих клиентов.

Новый подход российских учёных позволяет учитывать весь спектр факторов, а также внешний контекст, что улучшает точность анализа. Метод был протестирован на восьми нейросетевых моделях и пяти наборах данных, подтвердив свою эффективность.

Алексей Зайцев, заведующий лабораторией Центра искусственного интеллекта Сколтеха, отметил, что учёные смогли адаптировать модель даже к изменениям в поведении пользователей, а учёт данных о похожих клиентах дополнительно повысил точность прогнозов.

Оставьте ответ

Ваш электронный адрес не будет опубликован.