Актуальные новости банковской сферы.
BTC
$113,115.83
-3%
ETH
$4,101.50
-5.58%
LTC
$113.73
-4.33%
DASH
$21.39
-4.41%
XMR
$262.86
-6.06%
NXT
$0.00
-3%
ETC
$20.66
-4.69%
DOGE
$0.21
-6.03%
ZEC
$35.04
-2.09%
BTS
$0.00
-0.46%
DGB
$0.01
-3.71%
XRP
$2.88
-5.94%
BTCD
$1,074.87
-3%
PPC
$0.30
-0.01%
YBC
$5,655.79
-3%

Сбербанк обучил ИИ анализу банковских данных

Исследователи из России создали новый метод обучения нейросетей, позволяющий учитывать как локальные, так и глобальные аспекты данных о банковских операциях. Эта разработка, поддержанная грантом Российского научного фонда, может повысить точность прогнозов на 20%.

Как пояснил научный директор Лаборатории искусственного интеллекта Сбербанка Андрей Савченко, ранее большинство задач в этой сфере относились к глобальным, но сейчас возросла потребность в решении локальных проблем, и предложенный алгоритм оказался готов к этому вызову.

Современные системы машинного обучения анализируют последовательности банковских транзакций, выявляя закономерности, важные для оценки кредитных рисков и обнаружения мошеннических действий. Однако существующие методы часто фокусируются либо на стабильных факторах, таких как возраст клиента, либо на динамических изменениях, например, смене места жительства, не учитывая макроэкономические индикаторы и поведение похожих клиентов.

Новый подход российских учёных позволяет учитывать весь спектр факторов, а также внешний контекст, что улучшает точность анализа. Метод был протестирован на восьми нейросетевых моделях и пяти наборах данных, подтвердив свою эффективность.

Алексей Зайцев, заведующий лабораторией Центра искусственного интеллекта Сколтеха, отметил, что учёные смогли адаптировать модель даже к изменениям в поведении пользователей, а учёт данных о похожих клиентах дополнительно повысил точность прогнозов.

Оставьте ответ

Ваш электронный адрес не будет опубликован.