Актуальные новости банковской сферы.
BTC
$108,858.02
+0.1%
ETH
$2,550.90
-0.39%
LTC
$96.69
-2.04%
DASH
$23.49
-2.65%
XMR
$400.02
-0.44%
NXT
$0.00
+0.1%
ETC
$18.53
-2.69%
DOGE
$0.23
-2.72%
ZEC
$48.09
+0.32%
BTS
$0.00
-2.48%
DGB
$0.01
-2.68%
XRP
$2.35
+0.28%
BTCD
$1,034.41
+0.1%
PPC
$0.28
-0.19%
YBC
$5,442.90
+0.1%

Сбербанк обучил ИИ анализу банковских данных

Исследователи из России создали новый метод обучения нейросетей, позволяющий учитывать как локальные, так и глобальные аспекты данных о банковских операциях. Эта разработка, поддержанная грантом Российского научного фонда, может повысить точность прогнозов на 20%.

Как пояснил научный директор Лаборатории искусственного интеллекта Сбербанка Андрей Савченко, ранее большинство задач в этой сфере относились к глобальным, но сейчас возросла потребность в решении локальных проблем, и предложенный алгоритм оказался готов к этому вызову.

Современные системы машинного обучения анализируют последовательности банковских транзакций, выявляя закономерности, важные для оценки кредитных рисков и обнаружения мошеннических действий. Однако существующие методы часто фокусируются либо на стабильных факторах, таких как возраст клиента, либо на динамических изменениях, например, смене места жительства, не учитывая макроэкономические индикаторы и поведение похожих клиентов.

Новый подход российских учёных позволяет учитывать весь спектр факторов, а также внешний контекст, что улучшает точность анализа. Метод был протестирован на восьми нейросетевых моделях и пяти наборах данных, подтвердив свою эффективность.

Алексей Зайцев, заведующий лабораторией Центра искусственного интеллекта Сколтеха, отметил, что учёные смогли адаптировать модель даже к изменениям в поведении пользователей, а учёт данных о похожих клиентах дополнительно повысил точность прогнозов.

Оставьте ответ

Ваш электронный адрес не будет опубликован.