Актуальные новости банковской сферы.
BTC
$117,013.64
-0.23%
ETH
$4,567.67
+0.43%
LTC
$115.17
-0.18%
DASH
$24.14
+2.31%
XMR
$295.35
-5.6%
NXT
$0.00
-0.23%
ETC
$20.75
+1.07%
DOGE
$0.28
+3.25%
ZEC
$50.40
-2.6%
BTS
$0.00
-2.11%
DGB
$0.01
+0.56%
XRP
$3.07
+1.42%
BTCD
$1,111.91
-0.23%
PPC
$0.30
-0.02%
YBC
$5,850.68
-0.23%

Сбербанк обучил ИИ анализу банковских данных

Исследователи из России создали новый метод обучения нейросетей, позволяющий учитывать как локальные, так и глобальные аспекты данных о банковских операциях. Эта разработка, поддержанная грантом Российского научного фонда, может повысить точность прогнозов на 20%.

Как пояснил научный директор Лаборатории искусственного интеллекта Сбербанка Андрей Савченко, ранее большинство задач в этой сфере относились к глобальным, но сейчас возросла потребность в решении локальных проблем, и предложенный алгоритм оказался готов к этому вызову.

Современные системы машинного обучения анализируют последовательности банковских транзакций, выявляя закономерности, важные для оценки кредитных рисков и обнаружения мошеннических действий. Однако существующие методы часто фокусируются либо на стабильных факторах, таких как возраст клиента, либо на динамических изменениях, например, смене места жительства, не учитывая макроэкономические индикаторы и поведение похожих клиентов.

Новый подход российских учёных позволяет учитывать весь спектр факторов, а также внешний контекст, что улучшает точность анализа. Метод был протестирован на восьми нейросетевых моделях и пяти наборах данных, подтвердив свою эффективность.

Алексей Зайцев, заведующий лабораторией Центра искусственного интеллекта Сколтеха, отметил, что учёные смогли адаптировать модель даже к изменениям в поведении пользователей, а учёт данных о похожих клиентах дополнительно повысил точность прогнозов.

Оставьте ответ

Ваш электронный адрес не будет опубликован.